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1    Introduction 

Mature engineering fields have methods of construction that have a high likelihood of success 
and that guarantee the proper functioning of systems, even within hostile environments. 
These methods relate behavior to structure and have some underlying notion of composition 
related to the implementation domain. Unfortunately, the construction of computer systems 
has not yet reached the same level of maturity. While many mathematical theories have 
been developed, they have not yet been brought into standard engineering practice. 

Bridging this gap between theory and engineering practice requires sound and pragmatic 
principles of construction and composition for software systems. Thus there are at least two 
necessary tasks: identifying these principles, and investigating their suitability for problems 
of real engineering interest. Our approach is to adopt existing theories and technology 
where possible and to explore how they can be applied to nontrivial engineering applications. 
In particular, we focus on higher-order logic, category theory, and algebraic specifications, 
making significant use of the Higher Order Logic (HOL) theorem-prover [2j and Kestrel 
Institute's SPECWARE specification composition and refinement system [3]. 

The method of design in both HOL and SPEC WARE is to construct small modules that 
can be composed and verified. The well-documented advantages of modularity apply here, 
as modular theories will be more reusable, and easier to build and verify. HOL theories 
are organized hierarchically, so that new theories can be built by specialization of existing 
theories. Design in SPECWARE is a semi-automatic process, in which the designer creates 
specifications and chooses composition or refinement methods, which are performed auto- 
matically by the system. Again, the creation of small specifications is the preferred method. 
The universal composition method, based on pushouts and colimits in category theory, com- 
poses specifications in a canonical way. The refinement methods can create either C++ or 
LISP code. 

Our overall approach is to build HOL theories that specify the desirable properties and 
invariants that characterize the task, and use HOL's theorem-proving capability to verify the 
soundness and completeness of the collection of theories. These theories are then transformed 
into SPECWARE specifications, which are then refined into executable code. This approach 
has been used to formally define and specified much of a secure electronic mail protocol, RFC 
1421 - Privacy Enhanced Mail, [4]; these results have been reported elsewhere [9, 10, 8j. 

HOL theories and SPECWARE specifications are both higher-order theories, so the map- 
ping between them is fairly straightforward. However, there is a technical difficulty in the 
refinement process, because there are many potential refinements of a SPECWARE specifica- 
tion. Furthermore, not all refinements result in consistent specifications (i.e., specifications 
which can be refined to meaningful and valid code). Ultimately, we would like to identify 
explicit principles of construction that ensure the appropriate refinements and to explore the 
applicability of these principles. 

This report describes an important first step, namely the formulation in higher-order logic 
of the primary concepts that underlie SPECWARE'S refinement framework. Throughout this 
report, we provide both high-level, English-language explanations of the concepts, followed 



by their implementation in the logic of the HOL theorem prover. Section 2 covers the most 
basic definitions of category theory [6], the primary foundation for the rest of the mathemat- 
ical framework. The next three sections describe the foundations of algebraic specifications 
[!}. Section 3 introduces signatures, which are (roughly speaking) high-level abstractions 
that identify the basic data types and the basic operators of a system. Algebras—which 
provide interpretations for these signatures—appear in Section 4. To constrain the possible 
interpretations of a signature, it is necessary to introduce further constraints, leading to 
specifications; these are discussed in Section 5. Finally, Section 6 describes possible future 
work that carries our approach further. 

2    Category-Theory Basics 

In this section, we give an overview of the most basic definitions of category theory (includ- 
ing the notion of category itself) necessary for understanding the mathematical framework 
underlying SPECWARE. Our aim here is to provide English-language explanations of the 
concepts as well as their formulations in the higher-order logic of the HOL theorem prover 
[2]. In fact, we shall follow this approach throughout this report. 

The definitions in this section are not original, either in their English forms or in their 
HOL forms. For example, Pierce provides a significantly more complete introduction to 
category theory [6]. The HOL formulations we give in this section are due to Morris [5] 
and will form the basis of our own formulations in subsequent sections; Agerholm provides a 
similar embedding of category theory into HOL, choosing a different representation for the 
categorical arrows [7]. 

A category C comprises a collection Oc of objects and a collection Ac of arrows satisfying 
the properties detailed below. We often refer to the elements of Oc as C-objects and to the 
elements of Ac as C-arrows. 

• Each arrow is associated with two objects called its domain and codomain. When / is 
an arrow whose domain and codomain are A and B, respectively, we write / : A-> B. 

• For each C-object A, there is an identity arrow idA : A -> A. 

• For each pair of C-arrows / : A -» B and g : B -* C, there is a composite arrow 
go f : A-^C. The composition operator o satisfies the following properties: 

Identity For any C-arrow / : A—* B, 

f oidA = f       and       idB ° f = f 

Associativity For any C-arrows / : A-+ B, g : B -» C, and h:C-*D, 

ho(gof) = (hog)of 



For example, the category Set is a category of sets (as objects) and total functions 
between sets (as arrows). The identity arrow is the identity function, and the composition 
in the category is the standard function composition. 

In HOL, a category C can be represented as a four-tuple of functions with certain prop- 
erties. A pre-category is a four-tuple 

(0,A,Id,oo) :(a-> boot) x 

(a x 7 x a —> bool) x 

(a —> a x 7 x a) x 
(aX7xa-»aX7Xa-»aX7Xo) 

satisfying the following constraints: 

• The function O picks out C-objects from pre-objects of HOL type a. 

• The function A picks out C-arrows from pre-arrows of type a x 7 x a. 

• The function Id constructs an identity arrow for each C-object. 

• The function 00 constructs a composite arrow for two C-arrows / and g, provided that 
they are composable (i.e., when the domain of g is the codomain of /). 

As a technical aside, we point out the name 00 is used for the categorical composition 
operator to avoid confusion with HOL's built-in composition operator o. 

Each arrow in the category is represented by a triple (d, f, c) of type 0x7x0, where 
d, f and c correspond to the arrow's domain, the arrow itself, and its codomain, respectively. 
The accessor functions dorn and cod return the domain and codomain of a given arrow. The 
property composable asserts that two arrows of a given category are composable, and the 
property cpsl asserts that two triples are arrows of a certain category and that they are 
composable. These properties are summarized as follows: 

dom \~def    Vd m c.  dorn (d,m,c) = d 
cod \~def    Vd m c.   cod (d,m,c) = c 
composable hde/    Vf g.   composable f g = (dorn f = cod g) 
cpsl \-def    VAf g.   cpsl Afg = AfAAgA composable f g 

In Morris's treatment of category theory, whenever we are concerned only with a func- 
tion's behavior over a certain domain, the behavior of the function outside the domain is 
forced to be the value ARB. The value ARB is based on the Hubert operator e, and 
ARB of any type r is the term e : T.T. TWO definitions explore this idea. The predicate 
isRestr checks that the value of function / outside the truth-set of predicate P is ARB, and 
isRestr2 checks that the value of a curried function of two arguments g outside the truth-set 
of predicate Q is ARB. 

ARB = ex:*.  T 
isRestr hde/ VP f. isRestr P f = f = (Ax ::P. f x) 
isRestr2 \-def    VQ g. isRestr2 Q g = g = (Ax. Ay ::(q x). g x y) 



Using these definitions, the predicate isCat (given in Figure 1) checks whether a given 
four-tuple is indeed a category. It is straightforward to see that this HOL formulation 
captures all of the important aspects of the definition of category. 

isCat 

hdef    VO A id oo. 
isCat (0,A,id,oo) = 

(Vf ::A. 0 (dom f) A 0 (cod f)) A 

isRestr2 (cpsl A) oo A 
(Vf g ::A. composable f g 3 A (oo f g)) A 

(Vf g ::A. 
composable f g D 
(dorn (oo f g) = dorn g) A (cod (oo f g) = cod f)) A 

(Vf g h   ::A. 
composable f g A composable g h D 
(oo (oo f g) h = oo f (oo g h))) A 

isRestr 0 id A 
(Va 
(Va 
(Va 

0. A (id a)) A 
0.  (dorn (id a) = a) A (cod (id a) = a)) A 
0. 

(Vf   ::A.  (dom f = a) D    (oo f (id a) = f)) A 
(Vg  : :A.   (cod g = a)  D    (oo  (id a) g = g))) 

Figure 1: The predicate isCat. 

Any four-tuple that satisfies isCat defines a category. A compound type (a, i)cat is 
defined using a type-definition construct of HOL, where a is the type of pre-objects and 
(a x 7 x a) is the type of pre-arrows. 

cat_TY_DEF hde/    3rep. TYPE.DEFINITION isCat rep 

3    Signatures 

Having provided a HOL formulation of categories in the last section, we now turn our 
attention to some particular categories of importance to the development of assured code via 
algebraic specifications. In this section, we consider signatures, which introduce a collection 
of data types and operations on those types. Signatures are purely syntactic entities and 
have no meanings in and of themselves; in Section 4, we will examine algebras, which provide 
meanings for these signatures. 

A signature £ is a pair (S, ti), where S is a set of sorts (intuitively, base types) and Q is a 
set of function symbols (also called operators). Each function symbol p in Q. has an associated 
type (si x s2 x s3 x • • • x sn) —* s0 for some n > 0, with each Sj (for i € {0,1, • • • , n}) a 
member of S; such an operator is said to have arity n. A function symbol with type -* s is 
called a constant and is said to have type s. 



Ei/ : Sbp (sorts) : 
S« (sorts>> : boolPair 

color Qbp (function symbols) : 
Qtl (function symbols) : TT _ booipair 

9reen : color TF : boolPair 
yellow : color pT . 6oo/Pflir 

red : color FF : boolPair 
changeColor : color -> color ^ . ^^ ^ WPflfr 

Figure 2: Sample signatures. 

For example, Figure 2 contains two signatures, E« (for traffic lights) and Efcp (for boolean 
pairs). The traffic-light signature E« has a sort co/or to represent the colors of a traffic light, 
and three operators (i.e., green, red, and yellow) of type color to represent the three possible 
colors of a traffic light. It also has an operator changeColor that changes the color of the 
traffic light. (To be pedantic here, our intention is that changeColor will eventually have a 
certain behavior. However, because we are currently at a purely syntactic level, we are only 
indicating that there will be some operator with this name.) 

Likewise, the boolean-pair has a sort boolPair to represent boolean pairs and four op- 
erators (i.e., TT, TF, FT, FF) of type boolPair intended to represent the four possible 
combinations for a boolean pair. It also has an operator cycle intended to cycle through the 
various boolean pairs in a particular sequence. 

3.1    Signatures as a HOL Type 
We define sorts and function symbols to be of base types sort and operator in HOL. The use 
of new base types gives us as much generality as with a type variable, because a signature 
is just a set of symbols with special properties. 

For a signature E = (S, ft), S is represented in HOL as a set whose elements are of type 
sort. Based on the observation that every function symbol has an input type and an output 
type, Ü is represented in HOL as a set of triples (p, si, s) : operator x sort list x sort, where p 
is a function symbol, si is the type of input argument to p, and s is the return type of p. The 
function symbol's input type is a list of sorts. A constant c in fi with type s is represented 
by a triple (c,[],s), where [ ] is HOL's representation of the empty list. Using triples to 
represent the elements of the set Cl allows us to overload functions symbols. Elements (which 



we shall call function names) in Q can be treated as primitives. We define accent Functions 

rho : operator x sort list x sort —> operator, 

arg : operator x sort Hsi x sort —» sort Zzsi, 

ret: operator x sort Zist x sort —> sort 

to obtain the function symbol, the argument type, and the return type of a given function 
name: 

rho \~def    Vop v s.  rho (op,v,s) = op 
arg I-je/    Vop v s.  arg (op.v.s) = v 
ret Hde/    Vop v s.  ret (op,v,s) = s 

Because we use sets extensively, a predicate inSet is defined to test the membership of a 
set. 

inSet \-def    Vs e.   inSet s e = e IN s 

A pair (S, Q) represents a signature if the input and output types of all function-names 
in Q, are restricted to the sorts in S. The predicate 

rhoVSRes : sort set —» operator x sort list x sort —> bool 

tests whether the input and output types of a function-name (op, si, s) are restricted to the 
sorts in S. The predicate isSig : sort set x (operator x sort list x sort)set —> bool then 
defines the subset of pairs that are valid representations of signatures. 

rhoVSRes 
hde/ VSs op si s. rhoVSRes Ss (op.sl.s) = EVERY (inSet Ss) si A s IN Ss 

isSig 
\-def    VSs Omega.  isSig (Ss,Omega) = (Vr  ::(inSet Omega). rhoVSRes Ss r) 

Finally, we define a new type sig for signatures using HOL's type-definition construct. 
Accessor functions are defined in HOL to pick out from a signature its set of sorts S and its set 
of function names Q. We also define tester functions that, given a signature, check whether 
a sort is in the set of sorts and whether a function-name is in the set of function-names ft: 

sig_TY_DEF I-de/    3rep.  TYPE.DEFINITION isSig rep 
sortsSig I-de/    Vx.  sortsSig x = FST (REP.sig x) 
omegaSig h-def    Vx.  omegaSig x = SND (REP_sig x) 
inSorts \~def    Vx.  inSorts x = inSet (sortsSig x) 
inOmega \~def    Vx.  inOmega x = inSet (omegaSig x) 



3.2    Signatures as a Category 

A signature morphism / between two signatures £ = (S, ft) and £' = (S",ft') is a pair 
of functions fs : S -> 5' and /0 : ft -* ft' such that the mapping /0 between function 
symbols respects the mapping fs between sorts. That is, if a function-symbol p € ft has 
type (si x 52 x S3 x ••• x sn) -* s0, then f0{p) is a function symbol of ft' having type 

(/s(si) x fs(s2) x • • • x f8(sn)) -> fs(so). 
For example, recall the signatures of Figure 2. If the sort mapping fs : Su -» Sbp maps 

the traffic light's color sort to the boolean pair's boolPair sort, then f0 : ft« -> ftbp should 
map green to a function symbol in ft6p that has type boolPair. Thus /0 can map green to 
any of the four operators of type boolPair (TT, TF, FT, FF) in ft^, but it cannot map 
green to cycle. 

We can now define the category Sig whose objects are signatures and whose arrows 
are signature morphisms. In HOL, we represent an arrow in the category Sig by a triple 
(d, (fs, fo), c) having the following type: 

sig x 

((sort —* sort) x 
((operator x sort list x sort) -»■ (operator x sort list x sort))) x 

sig 

In this representation, d and c are the signatures that serve as domain and codomain of the 
arrow, and (fs, f0) is the signature morphism itself. 

We first define two accessor functions that retrieve the sort-mapping and operator- 
mapping components of an arrow. 

sigMFs.DEF hde/    Vd fs fo c.   sigMFs (d,(fs,fo),c) = fs 
sigMFo_DEF \-def    Vd is fo c.   sigMFo (d,(fs,fo),c) = fo 

We then define a predicate sig A, which identifies the signature morphisms from pre-arrow 
triples (d, (fs, fo), c). In particular, it ensures that fs and fo are indeed functions from the 
sorts and operators of d to the sorts and operators of c; it also checks that the funciton-name 
mapping fo respects the sort mapping fs. 

sigA.DEF 
I-de/  sigA = 

(let SA m = 
isRestr (inSorts (dom m)) (sigMFs m) A 
isRestr (inOmega (dom m)) (sigMFo m) A 
(Vsn ::(inSorts (dom m)). inSorts (cod m) (sigMFs m sn)) A 
(Vrl :: (inOmega (dom m)). 

let (op.v.s) = rl and r2 = sigMFo m rl 
in 
(r2 = (rho r2,MAP (sigMFs m) v,sigMFs m s)) A 
inOmega (cod m) r2) 

in 
SA)  



The identity arrow for a signature (5, Q) is a pair of identity functions ids : S -> S and 
idn : fi —> ft. In HOL it is defined as a predicate sigld, as follows. 

sigld 
hdef    sigld =  (As.   (s,   ((As   ::(inSorts s).   s),   (Ar   :: (inOmega s).  r)),   s)) 

The composition of two signature morphisms m and n is defined compentwise, so that 
their sort-mapping functions are composed and their operator-mapping functions are com- 
posed. The HOL definition of this composition operation sigOo is as follows. 

sigOo 
I-de/    sigOo = 

(Am. 
An :: (cpsl sigA m). 

dom n, 
((Ax  ::(inSorts (dorn n)).   (sigMFs m o sigMFs n) x), 

(Ax  : : (inOmega (dom n)).  (sigMFo m o sigMFo n) x)), 
cod m)   

These definitions together allow us to prove that the four-tuple (Xs.T, sigA, sigld, sigOo) 
is indeed a category (which we call sigCat), as evidenced by the following HOL theorem. 

sigCat_rep_IS_CAT 
[oracles:  #] [axioms: ]  [] h    isCat ((As. T),  sigA,  sigld,  sigOo) 

sigCat Y-def    sigCat = ABS.cat ((As.  T),  sigA, sigld,  sigOo) 

4    Algebras 
Algebras give meaning to signatures. For any given signature, there are many potential 
algebras, each providing a different interpretation of the sorts and function symbols. For 
a fixed signature E = (S, Q), we can talk about its collection of models; these models are 
called E-algebras, 

Each E-algebra is a pair (A,I), where A = {As | s € S} is an 5-indexed set of carriers, 
and J = {Ip | p G f2} is an ^-indexed set of functions. Furthermore, we require the 
functions Ip to respect the typings of each p: if the function symbol p is assigned the type 
Si x • • • x sn -* s, then Ip must be a function of type (ASl xAS2---x ASn) -»• As. Intuitively, 
each carrier As provides a set of values corresponding to the sort s. In turn, each function Ip 

provides an interpretation of the function symbol p as a function over the appropriate sets 
of data values. 

For example, recall the boolean-pair signature Sftp from Figure 2.   One possible E^- 



algebra is {{AbooiPair}, {hr, ITF, IFT, IFF, I cycle}), where: 

AboolPair = {(T,T), (T, F), (F,T), (F, F)} 

/Tr = (T,r) 
7TF = (T,F) 

iFT = (^) 
/FF = (F, F) 

1cycle — A(X '. AboolPair)- 

ifrr = (F,F) then (F,T) 

else if x = (F, T) then (T,F) 

else if x=CT,F) then (T,T) 

else (F, F) 

Note that while this algebra reflects our probable intended interpretation of the operators 
TT, TF, FT, and FF, this interpretation is not the only one. For example, consider the 
(rather artificial) algebra ({BbooiPair}, { JTT, JTF, JFT, JFF, Jcyde}), where BtodPair = N (the 
set of natural numbers) and the Jp functions are defined as follows: 

JTT 
== 0 

JTF 
= 5 

JFT 
= 5 

JFF — 13 
Jcycle = A(x : N). if x < 2 then 0 else 3 

This algebra meets all the necessary requirements: each constant operator of sort boolPair 
is mapped to a value from the set BbooiPair, and the operator cycle is mapped to a function 
of type Bb00lPair -» Bbooipair. In particular, it is not necessary for the values of BbooiPair to 
resemble boolean pairs or to even be in one-to-one correpsondence with the constants of the 
sort boolPair. Similarly, it is okay for different constants to be mapped to the same value, 
and the function J^ae can return values that are not necessarily assigned to a particular 
constant. 

In Section 5, we will discuss how signatures can be augmented with additional formulas 
or equations that rule out certain undesirable algebras (such as this oner perhaps). For now, 
however, we focus on the HOL implementation of algebras. 

4.1    Algebras as a HOL Type 
We introduce a new base-type value in HOL to represent the values that are in a carrier set. 
In HOL, the set of sort-indexed carrier sets of a S-algebra is represented as a set of pairs 
(v, s) : value x sort, where v is a value and s is the type of the value. This representation 



allows us to overload symbols for values.   Similarly, the set of functions of a E-algebra is 
represented as a set of functions, each taking a list of values to a value. 

We use triples of form (E, A, I) to represent E-algebras in HOL: in each case, A is a 
HOL function that constructs a carrier set from the sort of the signature E, and J is a HOL 
function that maps a function-name to a function. Thus A and / have the following types 
in HOL: 

A : sort —* value set 

I: (operator x sort list x sort) —»• (value list —»• value) 

We call A the carrier-sets assignment function and I the function-name assignment function. 
The HOL function carrierVals computes the carrier set of a E-algebra, given the carrier- 

sets assignment function A. 

carrierVals 
\-def    VA Ss.  carrierVals A Ss = {(s, v) | inSet Ss s A inSet (A s) v} 

Likewise, the function setOfVLists constructs a set from the carrier-sets assignment func- 
tion A and a sort list si such that every element of the set is a value list, and each value in 
the list has the type defined by the corresponding element in the sort list si. 

setOfVLists 
\-def    VA v.   setOfVLists A v = {xv ]  AND_EL (MAP2 inSet (MAP A v) xv)} 

A triple (E, A, I) is a E-algebra if the mapping from function-names to functions is 
consistent with the mapping from sorts to carrier sets. In HOL, this property is defined as 
a predicate isAlg: 

isAlg 
\-def    Vsigma A Is. 

isAlg (sigma,A,Is) = 
isRestr (inSorts sigma) A A 
isRestr (inOmega sigma) Is A 
(Vrvs   : :(inOmega sigma). 

isRestr (inSet (setOfVLists A (arg rvs))) (Is rvs) A 
(Vxv  ::(inSet (setOfVLists A (arg rvs))). 

inSet  (A (ret rvs)) (Is rvs xv)))  

This predicate isAlg identifies the subset of triples that are valid representations of 
algebras. Using HOL's type-definition construct with this predicate, we define a new type 
alg for algebras: 

alg_TY_DEF hdef    3rep. TYPE.DEFINITION isAlg rep 
alg.ISO.DEF 
\-def    (Va. ABS_alg (REP.alg a) = a) A 

(Vr.  isAlg r = REP_alg (ABS_alg r) = r) 
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Finally, we define accessor functions sigAlg, carrierAlg, and funsAlg that extract the sig- 
nature, the carrier sets, and the interpretation of function names from an algebra. 

sigAlg \-def    Vx.  sigAlg x = FST (REP_alg x) 
carrierAlg hde/    Vx.   carrierAlg x = FST (SND (REP_alg x)) 
funs Alg \-def    Vx.   funsAlg x = SND (SND (REP_alg x))  

4.2    £-Algebras as a Category 

A E-homomorphism between two E-algebras (.4, /) and (.4', /') is a collection of functions 
hs : As —> A's such that, for a E operator p with type Sj. x • • • x sn —> s, 

hs(Ip(vuv2, ...,vn)) = I'p{hSl v1,hS2 v2,... ,hSn vn). 

Intuitively, this equation says that E-homomorphisms preserve the algebraic structure: ap- 
plying the /-interpretation of the operator p to appropriate values V\,... ,vn and then trans- 
lating that result to a value in A's yields an equivalent result as first translating each of the 
values Vi to elements of A's. and then applying the /'-interpretation of p to those values. 

For any signature E, AlgE is the category whose objects are E-algebras and whose arrows 
are E-homomorphisms. The identity arrows are simply those homomorphisms for which each 
hs is the identity function, and composition is standard function composition (it is easy to 
verify that the composition of two homomorphisms is indeed a homomorphism). 

In HOL, we define the category AlgE in such way that the signature E is taken as a 
parameter. The predicate isSigmaAlg selects E-algebras from the set of all algebras. 

isSigmaAlg 
\~def    Vsigma.   isSigmaAlg sigma = (let P a = (sigAlg a = sigma) in P) 

In HOL, an arrow in the category AlgE is represented as a triple 

(m, h, n) : alg x (sort —> value —* value) x alg, 

where m and n are the domain and codomain E-algebras of the arrow and h : sort —* 
value —+ value is a function that maps the elements of ra's carrier sets to elements of the 
corresponding carrier sets of n. The predicate algHom defines a homomorphism between 
two algebras that have the same signature. The predicate sigmaAlgA picks out Algs arrows 
from pre-arrows with the help of algHom. 
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algHom.DEF 
\-def    algHom = 

(let aA (m,h,n) = 
(let values = 

carrierVals (carrierAlg m) (sortsSig (sigAlg m)) 

in 
(sigAlg m = sigAlg n) A 
isRestr (inSet  (sortsSig (sigAlg m))) h A 
(Vs   ::(inSet  (sortsSig (sigAlg m))). 

isRestr (inSet  (carrierAlg m s))  (h s) A 
(Vrvs  :: (inOmega (sigAlg m)). 

Vxv  ::(inSet (setOfVLists (carrierAlg m)  (arg rvs))). 
h (ret rvs) (funsAlg m rvs xv) = 
funsAlg n rvs (MAP2 h (arg rvs) xv)))) 

in 
aA) 

sigmaAlgA 
I-de/    Vsigma. 

sigmaAlgA sigma = 
(let AA (m.h.n) = isSigmaAlg sigma m A algHom (m,h,n) in AA) 

The identity arrow in the category AlgE is the function (As./ : value -> value).  The 
composition of arrows (a, /, b) and (6, g, c) is defined to be (a, Xs.({g s) o (/ s)), c). 

The four-tuple algCat that represents the Algs-category is defined as follows. 

sigmaAlgO 
\-def    Vsigma. sigmaAlgO sigma = (let AO = isSigmaAlg sigma in AO) 

sigmaAlgld 

\-def    Vsigma. 
sigmaAlgld sigma = 
(Aa  ::(sigmaAlgO sigma).  a,  (As  ::(inSorts sigma).  I),  a) 

sigmaAlgOo 
I-de/    Vsigma. 

sigmaAlgOo sigma = 
(Am. 

An ::(cpsl (sigmaAlgA sigma) m). 
dorn n,  (As   : :(inSorts sigma). mid m s o mid n s),  cod m) 

algCat 
\-def    Vsigma. 

algCat sigma = 
(sigmaAlgO sigma, 
sigmaAlgA sigma, 
sigmaAlgld sigma, 
sigmaAlgOo sigma) 

Proving that algCat represents a category amounts to proving the following goal: 

val goal = ([] ,    --' isCat  (algCat sigma) ' —) ;                1 
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Due to time limitations, we have not yet performed this proof within HOL. However, based 
on our prior experience with HOL and our knowledge that the underlying category theory 
is correct, we are confident that this goal could be proven with HOL without significant 
difficulties. 

4.3    Algebraic Terms 

Algebraic specifications describe abstract data types (ADTs) by augmenting signatures with 
descriptions of the characteristic properties of the ADTs. These properties of ADTs can be 
expressed as formulas (such as equations) on the terms of S-algebras. 

To define the algebraic terms associated with a given signature E = (S, Q), we begin 
with an infinite set V of symbols called variables assumed to be distinct from all the sorts 
and operator symbols in £. A sort assignment T is a finite set of pairs (x, s), where x £ V 
is a variable and s € S is a sort; F must be consistent, in that it may associate at most 
one sort with any particular variable. We then can define by mutual induction a family of 
sets Terms(£,r) = {Termss(E,T) | s e S} as follows, where each set Termss(E,r) is the 
collection of Y,-terms of sort s under the sort assignment T: 

• If (x, s) is in T, then x is in Termss(T,, T). 

• If, for each i G {1,2, • • • , n}, U is a term in TermsSi(E, T), and if p is a function symbol 
of type (si x s2 x • • • x sn —► s), then p(tx, i2, • • • , tn) is a term in the set Termss(L, T). 

A E-equation with respect to the sort assignment T is a pair of terms (ti,t2) such that ti 
and t2 are both elements of Terrass(E, T), for some sort s. Such an equation is conventionally 
written as: t\ =s ^[L]. 

To define the algebraic terms of a signature E in HOL, we first introduce a new base 
type variable to represent our variables. We then represent a sort assignment as a set of 
pairs (x, s) : variable x sort, where a; is a variable and s € S is its corresponding sort. The 
HOL predicate gammaRes identifies those sets that are valid sort assignments under the 
signature E = (5, Q,). 

gamm aRes 

•"de/ Vsigma g 
gammaRes 

amma. 
sigma gamma = 

(V(v,s) : :(inSet gamma). inSorts sigma s) 

Note that this implementation does not need to verify that each sort assignment T is consis- 
tent, because each variable v will always appear along with its sort in a pair (v, s). Intuitively, 
each pair (v, s) can be viewed as representing a variable vs of sort s, and hence (for example) 
the pairs (x, int) and (x, bool) represent distinct variables xint and x^i- 

We first define a recursive HOL-type ppreT, which provides an abstract-syntax repre- 
sentation for E-terms and their associated types. Strictly speaking, this new type is slightly 
more general than our desired E-terms, as it will also contain items that technically are only 
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portions of valid E-terms. For example, if an operator p has type (sx x s2 x • • • x sn) -» s 
and ti is a term of type Sl, then p h is not itself a E term. However, it is convenient to 
allow such partial terms in our abstract syntax, and we shall be able to easily pick out the 
valid terms from the set of ppreT values. 

The recursive type ppreT has the following three constructors: 

Leafv : (variable x sort) -* ppreT 

Leafo : (operator x sort list x sort) -> ppreT 

Comb : ppreT -»ppreT -> ppreT 

A value of form Leafv(x, s) represents a variable x of sort s. A value of form Leafo(op, [su s2,... , sn], s) 
represents an operator op of type (si x s2 x • • • x sn) -+ s. Finally, a value of Comb h t2 

corresponds to a partially instantiated term. 
We define a HOL predicate isPreSigmaTerm that determines the appropriate type for 

each element of ppreT as follows (HD and TL return the head and tail of a list): 

isPreSigmaTerm sigma gamma (\\,s)(Leafv (x,s)) 
inSet gamma (x, s)gammaRes sigma gamma 

inOmega sigma f 
isPreSigmaTerm sigma gamma (sl, s)(Leafo (op, sl, s)) gammaRes sigma gamma 

isPreSigmaTerm sigma gamma (ui,si)*i, 
isPreSigmaTerm sigma gamma ([ ], s2)t2  gammaRes sigma gamma 

isPreSigmaTerm sigma gamma (TL vi,Si)(Comb tx t2) s2 = HD v\ 

A E-term of type s under T is simply an element of ppreT whose associated type is ([ ], s). 
In HOL, these terms can be represented as four-tuples (E, I\ t, s) : sig x (variable x sort)set x 
ppreT x sort. The predicate isSigmaTerm identifies those four-tuples that are valid repre- 
sentations of E-terms. Using HOL's type-definition construct, we can also introduce a new 

HOL type sigmaTm. 

sigmaTm_TY_DEF 
[oracles: #] [axioms: ]  0 ^def    3rep. TYPE.DEFINITION isSigmaTerm rep 
sigmaTm_ISO_DEF 
[oracles: #] [axioms: ] 0 
hde/    (Va.  ABS_sigmaTm (REP_sigmaTm a) = a) A 

(Vr.  isSigmaTerm r = REP.sigmaTm (ABS.sigmaTm r) = r)  

We define accessor functions sigSigmaTm, gammaSigmaTm, tmSigmaTm, and tySigmaTm 
that extract the signature, the variable assignment, the term itself, and its type from a E- 

term. 
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sigSigmaTm \-def    Vx.   sigSigmaTm x = FST (REP_sigmaTm x) 
gammaSigmaTm \-def    Vx.   gammaSigmaTm x = FST (SND (REP_sigmaTm x)) 
tmSigmaTm hde/    Vx.   tmSigmaTm x = FST (SND (SND (REP.sigmaTm x))) 
tySigmaTm \-def    Vx.   tySigmaTm x = SND (SND (SND (REP_sigmaTm x))) 

A E-equation is a pair of E terms (tx, t2) : sigmaTm x sigmaTm where tx and t2 are of 
the same type. The predicate isSigmaEq identifies those pairs of E-terms that satisfy this 
constraint, and we use this predicate to define a HOL type sigmaEq for E-equations. 

isSigmaEq 
\-def    Vtl t2. 

isSigmaEq (tl,t2) - 
(sigSigmaTm tl = sigSigmaTm t2) A 
(gammaSigmaTm tl = gammaSigmaTm t2) A 
(tySigmaTm tl = tySigmaTm t2) 

sigmaEq_TY_DEF \-def    3rep.  TYPE_DEFINITION isSigmaEq rep 
sigmaEq_ISO_DEF 
\-def    (Va.  ABS.sigmaEq (REP.sigmaEq a)  = a) A 

(Vr.  isSigmaEq r = REP_sigmaEq (ABS.sigmaEq r) = r) 

We introduce accessor functions leftTermEq and rightTermEq that extract the left and 
right terms from a E-equation. Likewise, we introduce functions sigSigmaEq, garnmaSigmaEq, 
ItmSigmaEq, rtmSigmaEq, and tySigmaEq that obtain the signature, the variable assign- 
ment, the left term, the right term, and the terms' type from an arbitrary E-equation. 

leftTermEq \-def    Vx. leftTermEq x = FST (REP.sigmaEq x) 
rigthTermEq \-def    Vx. rightTermEq x = SND (REP.sigmaEq x) 
sigSigmaEq \-def    Vx. sigSigmaEq x = sigSigmaTm (leftTermEq x) 
garnmaSigmaEq \-def    Vx. garnmaSigmaEq x = gammaSigmaTm (leftTermEq x) 
ItmSigmaEq \-def    Vx. ItmSigmaEq x = tmSigmaTm (leftTermEq x) 
rtmSigmaEq \-def    Vx. rtmSigmaEq x = tmSigmaTm (rightTermEq x) 
tySigmaEq \-dej    Vx. tySigmaEq x = tySigmaTm (leftTermEq x)  

5    Algebraic Specifications 

As we have discussed in previous sections, every signature has a collection of models, not 
all of which necessarily capture our intentions. To reduce this collection to those models 
that do capture the intended meaning, it is necessary to add constraints to the signatures 
that limit the potential models. These constraints can be represented as equations that are 
added to a given signature; the result is an algebraic specification. 

An algebraic specification is a pair (E, E), where E is a signature and E is a set of E- 
formulas that serves as axioms of the specification. Algebraic specifications can be used to 
specify computer systems, where E describes the interface of the system and E is the desired 
system properties. 

For example, we can define TL-spec — (Y,ti,Eti) as a specification for the traffic light 
and BP-spec = (E^,!?^) as a specification for the boolean pair, where E*i and E&p are the 
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signatures described on page 6. With E«, the specification TL-spec states that a traffic light 
has exactly one of the three distinct colors. With Ebp, the specification BP-spec states that 
a boolean pair has exactly one of the four distinct values. 

Etl: 
color-distinct: (green ^ yellow) A (yellow ^ red) A (red ^ green) 

color-cases: for each color x, (x = green) V (x = yellow) V (x = red) 

Ebp : 
boolPair- distinct: 

(TT ± TF) A (TT ± FT) A (TT ? FF) A (TF ± FT) A (TF ? FF) A (FT ± FF) 

boolPair-cases: for each boolPair y, (y = TT) V (y = TF) V (y = FT) V (y = FF) 

A E-algebra (A, I) is a model of a specification (E,£) provided that (A, I) satisfies all 
the formulas in E. That is, for every possible variable assignment, all the E-formulas in E 
hold with respect to the carrier-set assignment A and the function-symbol assignments /. 

5.1    Specification as a HOL Type 
In HOL, we represent specifications by triples (E, T, E) of type sig x (variable x sort) set x 
sigmaEq set, so that E is a signature, T is a variable assignment, and E is a set of In- 

equations. 
The predicate isSpec identifies the subset of these triples that correspond to valid alge- 

braic specifications. 

isSpec 
hdef    Vsigma gamma E. 

isSpec (sigma,gamma,E) = 
(VsigEq  ::(inSet E). 

(sigSigmaEq sigEq = sigma) A (gammaSigmaEq sigEq = gamma)) 

Using this predicate along with HOL's type-definition construct, we can then define 
algebraic specifications as a new HOL type spec. 

spec_TY_DEF \-de/    3rep.  TYPE.DEFINITION isSpec rep 
spec_ISO_DEF 
\-def    (Va.  ABS.spec (REP.spec a) = a) A 

(Vr.  isSpec r = REP_spec (ABS.spec r) = r) 

As before, we also define accessor functions sigSpec, gammaSpec, and ESpec that ex- 
tract the signature, the variable assignment, and the set of E-equations from a specification. 

sigSpec \-def    Vx.  sigSpec x = FST (REP.spec x) 
gammaSpec \-def    Vx. gammaSpec x = FST (SND (REP.spec x)) 
ESpec I-de/    Vx. ESpec x = SND (SND (REP_spec x))     , 
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5.2    Algebraic Specifications as a Category 

The category Spec is the category of algebraic specifications: its objects are specifications, 
and its arrows are specification morphisms. A specification morphism / between two spec- 
ifications (£, E) and (E;, E) is a signature morphism between E and E' that preserves 
theorems: / takes any axiom (i.e., E-formula) in E either to an axiom in E' or to a theorem 
deducible from the axioms in E. 

We represent a specification morphism in HOL as a triple of functions fs : Si —*■ S2, 
f0 : fti —► ft2 and /„ : Ti -» T2. The pair (fs, f0) is a signature morphism, and fv provides 
a mapping between the two variable assignments of the specifications. This mapping fv is 
necessary at this stage to avoid the complex a-conversion of terms. 

An arrow in the category Spec is therefore represented as a triple (d, (fs, fo, fv),c) with 
the following type: 

spec x 

((sort —* sort) x 
((operator x sort list x sort) —*■ (operator x sort list x sort)) 

((variable x sort) —> (variable x sort))) x 

spec 

As before, we define accessor functions that retrieve the various components of a specification 
arrow: 

specMFs.DEF \-def Vd fs fo fv c. specMFs (d,(fs,fo,fv),c) = fs 
specMFo.DEF hdef Vd fs fo fv c. specMFo (d,(fs,fo,fv),c) = fo 
specMFv.DEF hdef    Vd fs fo fv c.   specMFv (d,(fs,fo,fv),c) = fv 

The signature arrow (/s, f0) : (S, Q) -> (S', ft') and the variable-assignment mapping 
fv : T —> r" determine the transformation from the E-equations of one specification to the 
E-equations of another specification. The terms of E (under T) can be transformed to terms 
of £' (under T') in the obvious inductive fashion: 

• Each (sub)term of form (Leafv (x, s)) is transformed to the term Leafv (fv (x,s)). 

• Each (sub)term of form (Leafo (op, si, s)) is transformed to the term Leafo (fo (op, si, s)). 

• Each (sub)term of form (Comb tl t2) is transformed by transforming its components 
t\ and tl. 

The recursive function iransPPT is formalized in HOL as follows: 

transPPT 
[oracles: #] [axioms: ] [] 
I"def (Vfo fv x. transPPT fo fv (Leafv x) = Leafv (fv x)) A 

(Vfo fv op. transPPT fo fv (Leafo op) = Leafo (fo op)) A 
(Vfo fv ppt2 pptl. 
transPPT fo fv (Comb pptl ppt2) = 
Comb (transPPT fo fv pptl) (transPPT fo fv ppt2)) 
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The E'-types of the newly constructed terms are obtained by applying the mapping fs 

to the original E-type of a term, so that each E-term t of type s is transformed to term t' 

with type (/s s): 

transTerm 
I-de/ Vfs fo fv sigma2 gamma2 t. 

transTerm fs fo fv sigma2 gamma2 t = 

ABS.sigmaTm 
(sigma2,gamma2,traiisPPT fo fv (tmSigmaTm t),fs (tySigmaTm t)) 

Finally, these transformations can be applied componentwise to transform a E-equation 
to a corresponding E'-equation, as follows: 

transEq 
\-def    Vfs fo fv sigma2 gamma2 eq. 

transEq fs fo fv sigma2 gamma2 eq = 

ABS_sigmaEq 

(ABS.sigmaTm 

(sigma2, 

gamma2, 
transPPT fo fv (ItmSigmaEq eq), 

fs (tySigmaEq eq)), 

ABS_sigmaTm 

(sigma2, 
gamma2, 
transPPT fo fv (rtmSigmaEq eq), 

fs (tySigmaEq eq)))  

Because specification morphisms must preserve theorems, we need a way to verify that 
each E-equation is translated to an equation derivable from the E'-equations. Ideally, we 
would define a function thmsDerivable : sigmaEq set -» sigmaEq set that constructs the 
set of all theorems derivable from a given set of axioms. We could then define a specification 
arrow in HOL as follows, where the predicate inGammaSpec defines the elements that are 
in the variable-assignment set T of a specification and the predicate specA picks out the 
specification arrows from pre-arrow triples: 

inGammaSpec t-de/    Vsp.  inGammaSpec sp = inSet (gammaSpec sp) 
specA_DEF 
I-de/    specA = 

(let SA (d,(fs,fo,fv),c) = 
sigA (sigSpec d,(fs,fo),sigSpec c) A 
isRestr (inGammaSpec d) fv A 
(V(xl.sl)   ::(inGammaSpec d). 

let (x2,s2) = fv (xl.sl) 
in 
inGammaSpec c (x2,s2) A (s2 = fs si)) A 

(Veq ::(inSet (ESpec d)). 
inSet (thmsDerivable (ESpec c)) 

(transEq fs fo fv (sigSpec c) (gammaSpec c) eq)) 
in 
SA)  
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This approach is clearly not feasible, as it is impossible to construct the set that contains 
all the theorems derivable from a given set of axioms. In fact, it is generally undecidable 
whether a given formula is a consequence of a collection of axioms. 

Based on our limited experience, however, we believe that in practice a user is capa- 
ble of ensuring that the mapping preserves theorems. The specification morphisms used 
to refine specifications in practice tend to introduce new constraints without significant 
renaming or significant omissions (i.e., E-axioms tend to be translated to E'-axioms). Fur- 
thermore, for more complicated translations, a user could prove the necessary preservations 
separately using the HOL theorem prover. Having verified the necessary conditions for the 
given specifications, the user could then introduce a HOL definition that provides a sufficient 
approximation to the set thmsDerivable(ESpec c), namely a set that contains precisely the 
(finite number of) verified axiom translations. Although such a process is not completely 
automated, it does allow a user to verify the validity of the translation and to generate 
assured specifications and refinements. 

Once specification arrows have been defined, we introduced a function sigASpecA to 
extract the signature arrow from a specification arrow. 

sigASpecA.DEF 

I-de/ sigASpecA = 
(let sAsA (d,(fs,fo,fv),c) = sigSpec d,(fs,fo),sigSpec c in sAsA) 

The identity arrow of the object (E, E) in the category Spec is the identity arrow of the 
object E in the category Sig, and composition in Spec is defined in the same way as in the 
category Sig: 

specId_DEF 
hdef    Vsp. 

specld sp = 
(let (fs.fo) = mid (sigld (sigSpec sp)) 
and f v = (Ax :: (inGammaSpec sp). x) 

in 
sp,(fs,fo,fv),sp) 

specOo_DEF 

l-de/ specOo = 
(Am. 
An :: (cpsl specA m). 

let (fs.fo) = mid (sigOo (sigASpecA m) (sigASpecA n)) 
and fv = 

(Ax  :: (inGammaSpec (dorn n)).   (specMFv m o specMFv n) x) 
in 
dom n,(fs,fo,fv),cod m) 

specCat_REP \~def    specCat = ((Ax.  T),specA,specld,specOo) 

Finally, the tuple specCat could be proved to represent a category by proving the follow- 
ing goal. 

val goal = ([], —'isCat specCat'—); 

19 



6    Summary and Future Work 
Throughout this report, we have identified many of the categories and constructs underlying 
algebraic specifications and their interpretations. Furthermore, we have formulated them in 
higher-order logic and (in most cases) verified the correctness of our formulation. 

The purpose of computer-assisted reasoning is to provide to help nonexperts in a given 
domain to nonetheless have confidence in their analysis. In this work, we have not uncovered 
new uses of category theory or proved new theorems about category theory. Instead, we 
have embedded category theory in a form that nonexperts can use in the future to construct 
assured specifications and ultimately assured code. The objective of our formulation of 
category theory in HOL is to fully explicate the underlying principles of construction that 

algebraic specifications provide. 
At present, this work remains incomplete. As discussed in Section 5, verifying that a 

specification morphism is valid introduces additional proof obligations for the user. We have 
not yet investigated the various mechanisms for integrating these obligations into the system. 
We would like to better understand the trade-offs involved and how well these mechanisms 

work in practice. 
In addition, we have not yet implemented the categorical mechanisms that underlie the 

composition of specifications or refinements of specifications. This type of composition and 
the notions of refinement rely on categorical pushouts (or, more generally, cohmits), which 
provide a canonical way to compose specifications. Intuiviely, a specification morphism / 
from A to B indicates how B can be viewed as adding additional constraints to A. The 
existence of pushouts in the category Spec assures that whenever a specification A can be 
further constrained by two different specifications B and C (via morphisms / and g), that 
there is a canonical specification D that captures precisely the additional constraints imposed 
by both B and C. Given such specification morphisms / : A -+ B and g : A -+ C, the 
pushout can be constructed algorithmically, and hence we do not anticipate any significant 
difficulties formulating pushouts in HOL. 
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